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Abstract

We describe an approach for exploiting structure
in Markov Decision Processes with continuous
state variables. At each step of the dynamic pro-
gramming, the state space is dynamically parti-
tioned into regions where the value function is
the same throughout the region. We first de-
scribe the algorithm for piecewise constant repre-
sentations. We then extend it to piecewise linear
representations, using techniques from POMDPs
to represent and reason about linear surfaces
efficiently. We show that for complex, struc-
tured problems, our approach exploits the natural
structure so that optimal solutions can be com-
puted efficiently.

1 INTRODUCTION

Markov Decision Processes (MDPs) have been adopted as
a framework for much recent research in decision-theoretic
planning. Classic dynamic programming algorithms solve
MDPs in time polynomial in the size of the state space.
However, the size of the state space is usually very large in
practice. For systems modeled with a set of propositional
state variables, the state space grows exponentially with the
number of variables. This problem becomes even more
important for MDPs with continuous state-spaces, which
we will refer to asgeneral state-space MDPs(GSSMDPs)
by analogy with general state-space Markov chains (Gilks,
Richardson, & Spiegelhalter 1996). If the continuous space
is discretized to find a solution, the discretization causes yet
another level of exponential blow up. This “curse of dimen-
sionality” has limited the use of the MDP framework, and
overcoming it has become an important topic of research.

In discrete MDPs, model-minimization (Dean & Givan
1997) techniques have been used with considerable success
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to limit this state explosion problem. Algorithms such as
SPI (Boutilier, Dearden, & Goldszmidt 2000) and SPUDD
(Hoey et al. 1999) operate by identifying regions of the
state-space that have the same value under the optimal pol-
icy, and treating those regions as a single state for the pur-
poses of dynamic programming. Although they do not
guarantee to avoid the combinatorial explosion in all cases,
they increase the range of application of MDP algorithms
to a wide class of real problems.

In this paper we extend this state aggregation to continu-
ous problems. Figure 1 shows the optimal value from the
initial state of a typical Mars rover problem as a function
of two continuous variables: the time and energy remain-
ing (Bresinaet al. 2002). The shape of this value function
is characteristic of the rover domain, as well as other do-
mains featuring a finite set of goals with positive utility and
resource constraints. Such a value function features a set of
humps and plateaus, each of them representing a region of
the state space where a particular goal (or set of goals) can
be reached. The sharpness of a hump or plateau reflects
the uncertainty attached to the actions leading to this goal.
Morevover, constraints on the minimal level of resource re-
quired to start some actions (Bresinaet al. 2002) introduce
abrupt cuts in the regions. It results in a function with vast
plateau regions where the expected reward is nearly con-
stant. These correspond regions of the state space where
the optimal policy tree is the same, and the probability dis-
tribution on future history induced by this optimal policy
is nearly constant. The goal of this work is to exploit such
structure by grouping together states belonging to the same
plateau, while reserving a fine discretization for the regions
of the state space where it is the most useful (such as the
curved hump where there is more time and energy avail-
able).

We will show that for certain subclasses of GSSMDPs, op-
timal solution can be obtained efficiently by exploiting the
structure in the problem to perform dynamic programming
at far fewer points than a naive approach would. The ap-
proach we will describe is restricted to MDPs with piece-
wise constant or piecewise linear reward functions, and



Figure 1: Value function in (Bresinaet al. 2002)

more significantly, to MDPs with discrete transition func-
tions. This means that for any state and action, a finite set of
states can be reached with non-zero probability. These re-
strictions ensure that the final optimal value function found
by our algorithms belong to well-behaved families. In
the case of a GSSMDP with discrete transition functions
and piecewise-constant reward function, the optimal value
function is guaranteed to be piecewise constant as well.
Similarly, the use of piecewise-linear reward functions en-
sures a piecewise-linear value function.

The restriction to discrete transition functions is a particu-
larly strong one. However, we can approximate MDPs with
continuous transition functions by an appropriately fine
discretization of the transition function. This provides an
attractive alternative to function approximation approaches
(Gordon 1995; Boyan & Moore 1995) in that it approxi-
mates the model but then solves the approximate model ex-
actly, rather than finding an approximate value function for
the original model. This has the advantage that the effect of
the approximation can be much more easily quantified. It
also contrasts with the naive approach that consists of dis-
cretizing the state space regardless of the relevance of the
partition introduced. Instead, we discretize the action out-
comes and deduce a partition of the state space from it. For
ease of exposition, we will assume that any approximation
has already been performed in the modeling process, and
we will refer to finding optimal policies and value func-
tions below, even when the model has been approximated.

Given these assumptions, the algorithm we describe will
produce as its output a partition of the state-space in which
each element of the partition consists of a region where the
optimal value function is constant (for a piecewise-constant
problem) or is the maximum of a set of linear functions (for
a piecewise linear problem). This is achieved using repre-
sentations of computational geometry to store state-space
partitions, and POMDP techniques to compute Bellman
back-ups in the piecewise linear case. On problems that
exhibit structure, the algorithm computes the optimal value
function substantially faster than a naive discretization of
the state space, even when it must discretize more finely
than the naive approach in some regions. The reduction

in the number of Bellman backups performed to compute
the optimal value function more than offsets the additional
cost of maintaining the structured representation. Although
this technique does not guarantee an exponential reduction
of the complexity of solving continuous problems by dis-
cretizing them, it allows solving in a few minutes instances
of the planetary rover problem that required in the order of
one day of computation before.

2 NOTATION

We adopt a standard MDP model with a continuous state
space: {X, A, R, T}. X is a vector of continuous state
variables〈X1, . . . , Xd〉. In addition we assume the value
of the variables are all in the range[0, 1), so the state space
is the unit square[0, 1)d. We usex ∈ [0, 1)d to refer to a
particular state.A is a finite set of actions.R is the reward
model:Ra(x) is the reward for taking actiona in statex.
T is the transition model. Following (Boyan & Littman
2000), we allow bothrelative andabsolutetransitions. A
relative transition is expressed asTa(x + δx,x), the prob-
ability that the state is shifted byδx relative tox. An abso-
lute transtion is expressed asTa(x′,x), the probability that
the resulting state isx′. We generally refer to the finite set
of possible resulting states from taking actiona in statex
as theoutcomes, denoted∆a

x. For relative outcomes, an el-
ementδi ∈ ∆a

x is a pair(δx, p), wherep is the probability
of that outcome. Similarly for absolute outcomes,δi is a
pair (x′, p).

We are interested in maximizing the expected total reward
of a finite-horizon plan. The Bellman Equation is:

V n+1(x) = max
a∈A

{Ra(x) +
∑

x′∈∆a
x

Ta(x′,x)V n(x)} (1)

whereV n(x) is the value function over the horizon ofn
time-steps andV 0(x) = 0.

3 STRUCTURAL ASSUMPTIONS AND
REPRESENTATION

The structure that we exploit in this paper consists of par-
titioning the continuous state space into discrete regions,
each of which can be treated as a single entity. In particu-
lar, we consider (hyper-)rectangular partitions of the state
space[0, 1)d. We will use the term “rectangle” or “region”
instead of “hyper-rectangle” for brevity, and we will dis-
cuss examples from a 2-dimensional state space, but the
formalism holds for arbitrary number of dimensions.

The important property of the models is that they are closed
under the Bellman backup in Equation 1. There are many
models that satisfy this property; as we said above, we con-
sider piecewise constant and piecewise linear models here,
and describe each of them in more detail in the following
subsections.



Figure 2: Rectangular piecewise constant models
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3.1 PIECEWISE CONSTANT STRUCTURE

In this section, we assume the transition and reward model
arerectangular piecewise constant(RPWC).

Definition 1 Rectangular Partition A rectangular parti-
tion of the state space[0, 1)d is a finite set of rectangles
� = {�1,�2, . . . ,�k}, where�i =

∏
[X low

i , Xhigh
i ),

such that
⋃

1≤i≤k �i = [0, 1)d, and�i ∩�j = φ iff i 6= j.

Definition 2 RPWC function A functionf : [0, 1)d→O
is RPWC, if there exists a rectangular partition� =
{�1,�2, . . . ,�k} such that∀i, 1 ≤ i ≤ k, and∀x,y ∈
�i, f(x) = f(y).

Note that the setO that a RPWC function maps to can ei-
ther be the set of real numbersR, in the case of the reward
model, or the set of all possible outcome sets∆, in the case
of the transition model.

As shown in Figure 2, the state space is partitioned into
rectangular regions. For each action, the outcome set and
the probability distribution over it are the same for all states
inside a region of the transition model partition. We will
use∆a

� to refer to the outcome set associated with a rect-
angle� and an actiona. In the case of a relative outcome
set, for a region�,

∀x,y∈�Ta(x + δx,x) = Ta(y + δx,y).

Thus a relative outcome can be seen asshifting a region.
An absolute outcome maps states in a region to a single
statez:

∀x,y∈�Ta(z,x) = Ta(z,y).

We will concentrate on the relative transition models, since
they are more interesting from a formal and algorithmic
standpoint. We will mention implications of absolute mod-
els where necessary.

For a specific actiona, the transition model is represented
by a partition�a

T , and for each rectangle� ∈ �a
T , a set

of relative outcomes∆a
� together with a probability distri-

bution over it. Similarily, the rewardsRa are constant in
each region. The reward model is represented by a rect-
angular partition�a

R and for each rectangle� a constant
R� representing the reward. Note that the partitions for the

transition and reward model of an action need not be the
same.

Applying RPWC assumptions to the standard model de-
scribed in the previous section results in an MDPM1 =
{X, A, T�, R�}, whereT� andR� are RPWC transition
and reward models as described above. We can show that

Theorem 1 For MDP M1, if V n is RPWC, thenV n+1

computed by the Bellman backup (Equation 1) is also
RPWC.

Since we can represent a RPWC function exactly using a
set of rectangles, this theorem enables us to carry out the
Bellman backup exactly, assuming the initial value function
is RPWC. States belonging to the same region of the value
function: (i) have the same optimal policy; (ii) generate
the same probability distribution on future history, in terms
of actions performed, rewards received, and value function
regions traversed under this optimal policy; and thus, (iii)
have the same value.

Dynamic Programming for M1 We now describe the
Bellman backup procedure for the RPWC model. We first
show how to compute the summation in Equation 1, which
we denote asσa:

σa :=
∑

x′∈∆a
x

Ta(x′,x)V n(x′)

We construct a partition forσa by projecting the parti-
tion defined by the transition model of actiona, namely
�a

T , onto the partition defined byV n, using Procedureσa

listed in Figure 4. As an example, Figure 3 shows the sub-
dividing process for a single rectangle� ∈ �a

T . There are
two relative outcomes for this action if taken in�, namely
δ1 with probability 0.2 andδ2 with probability 0.8. For
each outcome, we compute the new position of rectangle
�, and intersect it with the partition ofV n. The result is
then multiplied by the probability of the outcome. Finally,
the results of all outcomes are intersected and the summa-
tion is computed within each sub-region of the intersection.

Note that this process assumes relative outcomes. For ab-
solute outcomes, we need to modify step 1(a) so that the
region�j is not subdivided, and is assigned the value of
the outcome state inV n multiplied by the outcome proba-
bility.

The remainder of the Bellman backup involves adding the
reward and performing the max over all possible actions.
The full algorithm is listed as ProcedureBellman backup
in Figure 4. In the whole process, a rectangle is further
sub-divided only when necessary during the process of in-
tersecting two partitions.

KD-Tree Representation For our implementation, we
use kd-trees (Friedman, Bentley, & Finkel 1977) to store



Figure 3: Computingσa for M1
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Figure 4: Dynamic Programming forM1

Procedureσa

1. For each region�j in �a
T

(a) For each outcomeδi ∈ ∆a
�j

i. Compute the region�δi
j resulting from shifting

�j by the relative outcomeδi.

ii. Intersect the shifted region�δi
j with the partition

of V n, producing sub-regions�δi
j,k

iii. Assign to each sub-region�δi
j,k the value of the

corresponding region ofV n multiplied by the
probability of the outcomeδi.

(b) Intersect all the shifted regions from all of the out-
comes, producing partition�j

σa
.

(c) Assign to each of the regions in partition�j
σa

the sum
of the values of the corresponding sub-regions�δi

j,k.

2. Assemble the final partition:�σa = ∪j�j
σa

.

ProcedureBellman backup

1. Compute partition�σa for all a usingProcedureσa.

2. For each actiona

(a) Intersect partition�σa with �a
R to get partition�Qa .

(b) The value of each region in�Qa is computed by sum-
ming the values of the corresponding regions of�σa

and�a
R.

3. The partitions�Qa of all actions are intersected, producing
�V n+1 .

4. The value of each region in�V n+1 is computed as the max
of each of the corresponding regions in all the partitions
�Qa .

and manipulate the rectangluar partitions. A kd-tree is a
multidimensional generalization of the binary tree in which
space is recursively split by hyper-planes orthogonal to one
of thek axes. Note that the partition induced by a kd-tree
may contain unnecessary spliting of regions in a RPWC
function. On the other hand, the intersection operation,
which is the main computation of the whole algorithm, can
be performed efficiently using algorithms such as (Naylor,
Amanatides, & Thibault 1990) on kd-trees. Notably, these
algorithms treat different number of dimensions in a uni-
form way, and have complexity that only depend on the

size of the kd-trees. We omit details here for space reason.

Actions that have a relative effect on some variable tend to
cause the partition of the value function to get finer as the
horizon increases, which can affect the efficiency of the al-
gorithm. For this reason, it can be necessary to implement a
merging mechanism to unify neighboring regions with the
same value. Value-based region merging breaks some of
the properties of the model. Notably, states belonging to the
same region no longer necessarily generate the same prob-
ability distribution over trajectories. However, this does not
affect the outcome of the algorithm, while allowing compu-
tational savings. If these savings appear insufficient for a
particular application, one can further reduce the complex-
ity of the algorithm by merging pieces with similar value,
trading quality of solution for computation time.

Merging based solely on value can break the RPWC prop-
erty, resulting in partitions that can not be represented by
kd-trees. For our implementation, we performed the merg-
ing taking into account both the value and the structure
of the kd-tree representation, by performing a depth-first
traversal of the kd-tree, and merging the leaf-nodes of the
kd-tree if they have the same value. This way the kd-tree
representation is maintained throughout the merging pro-
cess.

3.2 PIECEWISE LINEAR AND CONVEX
STRUCTURE

In this section, we extend the modelM1 by allowing more
complex reward structures so that richer domains can be
modeled. For example, to take into account the lighting of
a rock from the sun in a rover problem, the value of taking a
picture could vary linearly with time of the day. To model
such structures, we extend the RPWC reward model to a
rectangular piecewise linear and convex(RPWLC) reward
model.

Definition 3 PWLC A functionf over a region� is piece-
wise linear and convex, if there exists a finite set of lin-
ear functionsL = {li|li(x) = Aix + Bi} such that
∀x ∈ �, f(x) = maxli∈L li(x).

We will generally useL to refer to both a set of linear func-
tions and the PWLC function that it represents.

Definition 4 RPWLC A function f : [0, 1)d → R is
RPWLC if 1) there exists a rectangle partition� =
{�1, . . . ,�k}; and 2)∀i, 1 ≤ i ≤ k, there exists a PWLC
functionL

i
such that∀x ∈ �i, f(x) = L

i
(x).

This representation allowsR andV i for a region of the par-
tition to be the maximum of a set of linear functions, rather
than a single function as inM1. We allow this because a
Bellman backup will create non-rectilinear regions when it
performs the maximization step on linear functions.



We will refer to the model with the RPWLC assumption as
M2 = {X, A, T�, RL

�}, whereRL
� is the RPWLC reward

model as defined above. Often, the reward function may be
of a simpler form (a single linear function per region), but
the resulting value function will remain RPWLC. Note that
the transition model remains RPWC inM2.

The PWLC structure is a feature ofpartially observable
MDP (POMDP) models (see, for example, (Cassandra,
Littman, & Zhang 1997)). Thus, the RPWLC assumption
allows us to adapt some existing results and practices in the
POMDP literature. First we can show that,

Theorem 2 If V n is RPWLC, thenV n+1 as computed by
the Bellman backup in Equation 1 is also RPWLC.

As in the RPWC modelM1, the operations during the Bell-
man backup forM2 are intersection, summation, and max.
The intersection is identical. The difference betweenM1
andM2 arises from the fact that for the value functions in
M2, each rectangle contains a set of linear functions rather
than a single scalar value. In particular, we need to perform
additionandmaximizationbetween two sets of linear func-
tions over the same rectangle. These operations are well
defined in the POMDP literature. In particular, the addi-
tion of two sets of linear functionsL1 andL2 is carried out
by thecross-sumoperator, and the maximization be carried
out by theunionoperator:

Definition 5 PWLC cross-sum and unionLet f1 andf2

be two PWLC functions represented byL1 and L2, then
the functiong(x) = f1(x) + f2(x) can be represented
by the cross-sum ofL1 and L2, defined asL1 ⊕ L2 :=
{(li + lj)|li ∈ L1, lj ∈ L2}, and the functionh(x) =
max{f1(x), f2(x)} can be represented by the union set
L1 ∪ L2.

Pruning is performed to remove dominated linear func-
tions. Maximization over the remaining linear functions
is used to determine the value and policy of any point
in the state space. This considerably improves the ef-
ficiency of the algorithm, and the combination of prun-
ing and maximization over the remaining linear functions
achieves the maximization part of the Bellman equation.
As in POMDPs, dominance is computed by solving a lin-
ear program. Many POMDP algorithms differ only in the
way the pruning is carried out. Our implementation for RP-
WCL GSSMDPs prunes every intermediate function as in
Incremental Pruning (Cassandra, Littman, & Zhang 1997).

To adapt the algorithms presented above so that they sup-
port theM2 model, we make the following changes: In
step (1)(c) of Procedureσa and step (2)(b) of Procedure
Bellman backup, we change sum of values to cross-sum of
linear functions. In step (4) of ProcedureBellman backup,
we change max of values to union of linear functions. Then
we add pruning after step (1)(c) of Procedureσa and after
steps (2)(b) and (4) of ProcedureBellman backup.

4 MIXED DISCRETE-CONTINUOUS
MODEL

In this section, we further extend the model to include dis-
crete state components, which is the case of the Mars rover
domain that motivated this work (Bresinaet al. 2002). The
new model is defined asM3= {S,X, A, T�, RL

�}, where
S is a set of discrete states. The full state space is the prod-
uctS ×X. We will use(s,x) to refer to a specific state in
the state space.Ta(s′,x′, s,x) is the probability of reach-
ing (s′,x′) if actiona is taken in state(s,x). We will gen-
erally define the transition model by a a marginal probabil-
ity distribution on the arrival discrete state:T d

a (s′, s,x),
and a conditional distribution over the continuous space
T c

a(x′, s′, s,x) given the arrival discrete state. As inM1
andM2, the conditional distributionT c

a is assumed to be
RPWC. For reward, we will define a functionRs

a(x) for
each action and discrete state pair, and assume that allRs

a

are RPWLC. We represent the value function over the full
state space using a set of functionsV := {Vs(x)|s ∈ S}.
The Bellman backup forM3 can be performed as:

V n+1
s (x)=max

a∈A
{Rs

a(x)+
∑
s′

T d
a (s′|s,x)σs′

a }

σs′

a =
∑
x′

T c
a(x′, s′, s,x)V n

s′ (x′)

We can show that,

Theorem 3 If V n
s is RPWLC for∀s ∈ S, thenV n+1

s is
also RPWLC for∀s ∈ S.

Algorithmically, the addition of discrete states changes the
backup procedure by adding a loop over the discrete states
to the computation described in the previous section.

5 EXPERIMENTAL RESULTS

This section depicts preliminary results obtained by solv-
ing prototype (“toy”) instances of the Mars rover domain.
Encouraged by these results, we are currently integrating
the techniques presented here in an integrated architecture
for planning and execution that allows solving real size in-
stances of the problem (cf. section 7). This system uses
other acceleration techniques and lies beyond the scope of
the paper.

We tested our algorithms on a Mars rover domain adapted
from (Bresinaet al. 2002). The domain contains a “pri-
mary” plan, which consists of approaching a target point,
digging the soil, backing up, and taking spectral images of
the area. All these actions consume time and battery ac-
cording to different Gaussian distributions. There are two
potential branch to the primary plan: The first branch is
to replace the spectral imaging with a high-resolution cam-
era imaging, which in general consumes more time and en-



Figure 5: Results on the three sets of test problems from Mars rover domain. Times are measured in seconds, and the base
of log is 2.
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(c) Result on problem set 3D.

ergy. The second branch is to replace the digging-backing-
imaging plan with a simple low-resolution imaging, and
then perform onboard image analysis.

We model the domain with 11 discrete states representing
different stages of the rover exploration process. We vary
the number of continuous variables, which model differ-
ent types of resources, from 1 to 3, creating three sets of
test problems, referred to as 1D, 2D and 3D, respectively.
In the original domain, action effects on the resources are
modeled with continuous probability distributions. In our
model, these continuous distributions are discretized. The
resolution of the discretization is the independent variable
in our experiments. For each resolution, we create two ver-
sions of the problem, one with constant rewards (RPWC
representation), the other with rewards that are linear func-
tions of the continuous variables (RPWLC representation).
We compare the performance of our algorithm on each of
these two representations with a naive algorithm that dis-
cretizes the value function using the same resolution used
in the input discretization.

Figure 5 shows the results. TheX-axis shows the input dis-
cretization resolution on each continuous variable. TheY -
axis shows the elapsed run-time of the different algorithms,
on a logarithmic scale. Note that for the naive approach, the
run-time of the two versions (RPWC and RPWLC) of the
problem are largely the same, because after the discretiza-
tion of the value function, the identical amount of compu-
tation is carried out for both problems. Thus only the result
on the RPWC problem is plotted.

As the figures show, our algorithm is slower than the naive
approach for all the 1D problems. The overhead of deal-
ing with the complex data structure exceeds the savings
gained from it for the simple version of the problems. For
the 2D problems, the RPWC model outperforms the naive
approach. For lower input resolutions (from 50 to 150), the

RPWLC model performs similarly to the naive approach.
However, it is considerably faster for higher resolution
problems. For the 3D problems, the difference between
the naive approach and our approaches is more dramatic.
In particular, the naive approach did not finish after 3 hours
for problems with resolution greater than 80.

These results shows that our algorithm can scale better as
the number of continuous variables increases. The im-
proved scalability results from exploiting the specific prob-
lem structure to avoid unnecessary discretization of the
value function. Figure 6 shows the resulting value func-
tion on a specific discrete state of a problem in the 2D set
with RPWLC rewards, and an input discretization of 25 on
each dimension. The left side shows the actual function,
and the right side shows the corresponding partition over
the continuous space. As we can see, fine discretization is
only applied to the upper right region. Approximately 70%
of the space is treated exactly with only a small number of
regions. In contrast, the naive approach discretizes the en-
tire space evenly, expending a large amount of computation
on areas that are, in fact, from the same linear function. Our
algorithm avoids this computation by treating large regions
as a single state.

Two features in Figure 6 deserve further analysis. Firstly,
although the input is only discretized with a resolution of
25, the resulting partition has considerably more discretiza-
tion points, albeit all concentrated at the upper right region.
This is because the initial partitions defining the transi-
tion and reward models are not necessarily aligned with
the input discretization, so a finer partition is needed to
represent the optimal value function. The naive approach
doesn’t make the additional distinctions so it misses de-
tails of the value function. The complexity grows over the
course of the dynamic programming, so early iterations use
coarser partitions, providing another saving over the naive
approach.



Figure 6: The piecewise-linear value function and the corresponding space partition for the starting discrete state in the
2D problem. The resolution is 25 per continuous variable, to show the discretization more clearly. The left side shows the
optimal value function of the starting discrete state computed by the algorithm, and the right side shows the rectangular
partition of the continuous space for that value function. For some region, most noticeably the one from (0.6,0.2) to
(1.0,0.5), there are multiple linear functions defining the value, resulting in to a curved shape in the left side figure.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Y

X

Secondly, note the region from around point(0.6, 0.2) to
(1.0, 0.5). The value function as can be seen on the left of
Figure 6 over this region has a curved shape. It is in fact
composed of 13 linear functions. This is typical when the
reward model is RPWLC. Again, the dynamic program-
ming is keeping the discretization to a minimal by auto-
matically grouping states whose value function can be rep-
resented in a single PWLC form into an abstract state.

For all tests, the solution times for RPWLC models are
greater than those of the RPWC model. This is because of
the extra computation on the linear vectors in the RPWLC
model, in particular, solving the linear programs to keep
the representation of the PWLC function minimal. For the
3D problem set, the RPWLC model runs out of memory for
the problem with input discretization of 140. The primary
cause of this is that some regions require a large number
of linear vectors to represent the value function. Our cur-
rent algorithm attempts to minimize the number of regions.
However, we can introduce a trade-off between the size of
the partition and the size of the vector representation, by
sub-dividing a partition to allow more vectors to be pruned.
Handling this trade-off remains as future work.

6 RELATED WORK

This paper can be seen as a generalization of both the
work on exploiting structure in discrete MDPs (Dietterich
& Flann 1997; Boutilier, Dearden, & Goldszmidt 2000;
Hoey et al. 1999), and the time-dependent MDPs of
(Boyan & Littman 2000). The former are restricted to
discrete problems but use an analogous structured Bell-
man backup procedure to ours, while Boyan and Littman’s
piecewise constant and linear models feature only one con-
tinuous state variable. Moving to a multi-dimensional con-

tinuous framework introduces many issues in formalism,
algorithms, and representation that we have addressed in
this paper.

The most common approaches to continuous state variables
in MDPs are to use function approximators (Gordon 1995;
Boyan & Moore 1995), such as artificial neural networks,
to discretize the continuous state space more or less naively,
which does not scale well to multiple dimensions, or to use
Monte-Carlo approaches (Thrun 2000). None of these ap-
proaches exploits the structure in the problem. In fact, we
implemented a variant of Thrun’s algorithm to compute the
function in Figure 1; the algorithm took orders of mag-
nitude longer than the method in this paper. Munos and
Moore (Munos & Moore 2002) propose a formal model of
a continuous MDP and algorithms for discretizing it adap-
tively. Their approach involves solving the MDP at one
level of discretization, then locally refining the discretiza-
tion, and repeating until the approximation is good enough.
However, their model is a deterministic MDP where ac-
tions must be applied over continuous durations. The non-
determinism in action outcomes results only from the dis-
cretization. This does not fit the problem of planetary rover
planning that uses discrete global commands such “drive
from lander to rock 1”, and is intrinsically rife with exoge-
nous uncertainty (Bresinaet al. 2002). Although a similar
approach based on incremental refinements could probably
be adopted in this framework, it is beyond the scope of this
paper to explore this direction . Note that by taking advan-
tage of the known structure of the problem, our algorithms
find the correct level of discretization and solves the MDP
only once.

In the RL literature we find approaches such as U-trees
(Uther & Veloso 1998) which learns a tree-based represen-
tation of a continuous value function similar to ours. How-



ever, since this and similar approaches assume an unknown
model, they must infer the value function’s structure from
observations rather than being able to compute it from the
model.

7 CONCLUSIONS AND FUTURE WORK

We have proposed an algorithm that exploits structure in
the problem representation to solve MDPs with continu-
ous state-spaces (GSSMDPs). We have shown that for re-
stricted subclasses of such MDPs we can solve them ex-
actly, and that for general GSSMDPs we can approximate
the model and solve that. By only differentiating states that
need to be differentiated, this approach saves considerable
computation time, particularly in high dimensions. We then
presented the foundations and practical implementation of
functional DP algorithms that manipulate piecewise con-
stant and piecewise linear value functions. We then demon-
strated our algorithms on simulated Mars rover problems.

The algorithms presented in this paper address only one of
the obstacles on the road to applying the decision theoretic
approach to real rover problems. There are other issues
that considerably limit the size of the problems that can be
solved. The main of them is that the lattice of discrete states
is itself exponentially large, due to the propositional repre-
sentation is used. To combat this, we are currently com-
bining the techniques presented here with a structured ap-
proach for discrete MDPs in the same line as SPI (Boutilier,
Dearden, & Goldszmidt 2000), in an integrated architecture
for planning and execution for the K9 experimental rover.
At present we maintain a value function over the continu-
ous state for each discrete state. However, it is likely that
many of these share structure. In the extreme case, two dis-
crete states may have identical value functions, in which
case we would like to combine them. In other cases only a
subset of the continuous state may match. We may be able
to interleave splits on discrete state with splits on contin-
uous state in the kd-tree to capture the structure in mixed
models efficiently.

Another future direction is to allow parameterized actions
such as “drive ten metres” or the dawdling action of (Boyan
& Littman 2000) that can be performed for any continu-
ous duration. Different semantics for the parameter lead
to slightly different models, but in principle there is no rea-
son why our approach cannot be extended to handle actions
with continuous parameters.

Finally, we plan to extend our approach to exploit reacha-
bility. Similar to (Feng & Hansen 2002), we can perform
search using our partitioned state-space and avoid compu-
tation completely in regions that are not relevant given a
start state.
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